

Driven/Active Transport of Magnetic Particles in Microfluidic Environments

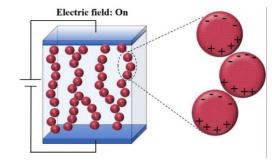
Fanlong Meng (孟凡龙)

Max Planck Institute for Dynamics and Self-Organization, Germany

1. Driven Annealing of Magnetic Colloid

Solid-Liquid Colloid

External-Field cued colloid



Adapted from Nanomater. 5, 2249 (2015)



Laser on

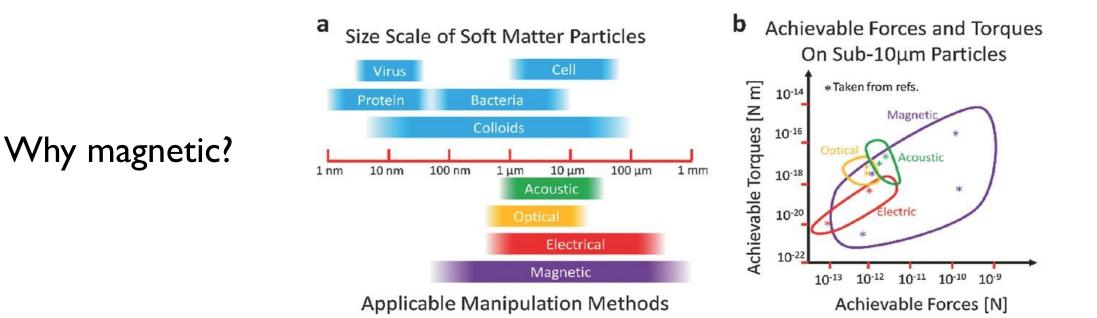
Adapted from Sci. Adv. 3, e1700458 (2017)

Adapted from PNAS 115 , 10618 (2018)

100 μm

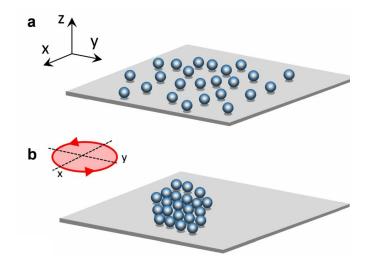
Adapted from Nat. Comm. 7, 10694 (2016)

External-Field Cued Soft Matter Particles



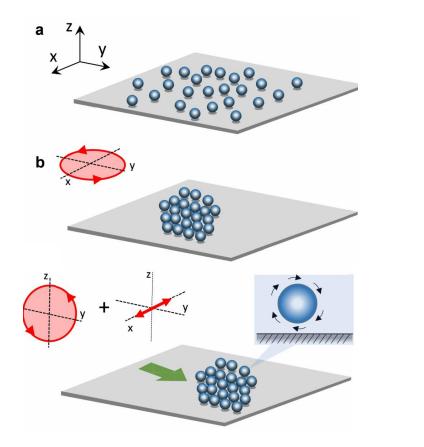
Erb et al. Adv. Funct. Mater, 26, 3859 (2016)

Phenomenon



Magnetic field $\boldsymbol{B} = B_0 [\cos{(\omega t)} \hat{\boldsymbol{x}} - \sin{(\omega t)} \hat{\boldsymbol{y}}]$

Phenomenon



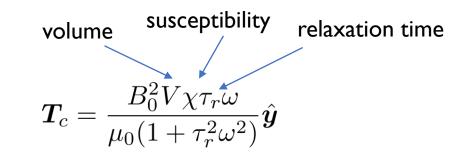
Increasing B_z

Why this and how to control

Magnetic field $\boldsymbol{B} = B_0[\sin(\omega_x t)\hat{\boldsymbol{x}} + \cos(\omega t)\hat{\boldsymbol{y}} - (B_z/B_0)\sin(\omega t)\hat{\boldsymbol{z}}]$

Individual Paramagnetic Particle

Magnetic torque



Magnetic field $\boldsymbol{B} = B_0 [\cos{(\omega t)} \hat{\boldsymbol{x}} - \sin{(\omega t)} \hat{\boldsymbol{z}}]$

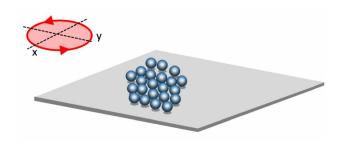
In presence of a wall in xy plane

$$\mathbf{v}_0 = \frac{T_c a^2}{32\pi\eta h^4} \hat{\boldsymbol{x}}$$

Cebers and Kalis, Euro. Phys. J. E 34, 1292 (2011)

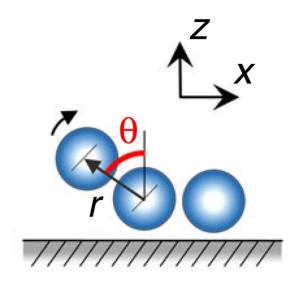
Martinez-Pedrero, Ortiz-Ambriz, Pagonabarraga, and Tierno, Phys. Rev. Lett. 115, 138301 (2015)

Magnetic Dipole-Dipole Interaction and Hydrodynamic Interaction



Magnetic dipole-dipole interaction

$$U_{\rm m} = -\sum_{i,j\neq i} \frac{\mu_0 \left[3(\boldsymbol{m}_i \cdot \boldsymbol{r}_{ij})(\boldsymbol{m}_j \cdot \boldsymbol{r}_{ij}) - \boldsymbol{m}_i \cdot \boldsymbol{m}_j r_{ij}^2 \right]}{4\pi r_{ij}^5}$$



Hydrodynamic interaction

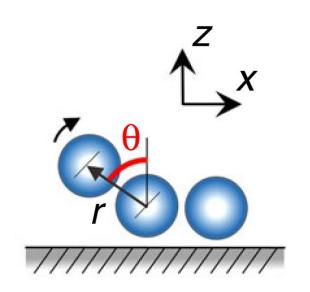
$$oldsymbol{v} = rac{oldsymbol{T} imes oldsymbol{r}}{8\pi\eta r^3} = rac{aoldsymbol{\omega}_c imes oldsymbol{\hat{r}}}{4}$$

Effective torque

$$\boldsymbol{T}_{\rm h} = 3\pi\eta a^3 \boldsymbol{\omega}_c = \frac{\pi a^3 B_0 B_z \chi \tau_r \omega}{2\mu_0 (1 + \tau_r^2 \omega^2)} \hat{\boldsymbol{y}}.$$

Massana-Cid #, Meng #, Matsunaga, Golestanian, and Tierno, Nat. Comm. 10, 2444 (2019)

Many Particles: Effective Energy Form



Effective energy

$$U_{tot} = U_m + U_h \qquad U_h = T_h \theta$$

Dynamic equation

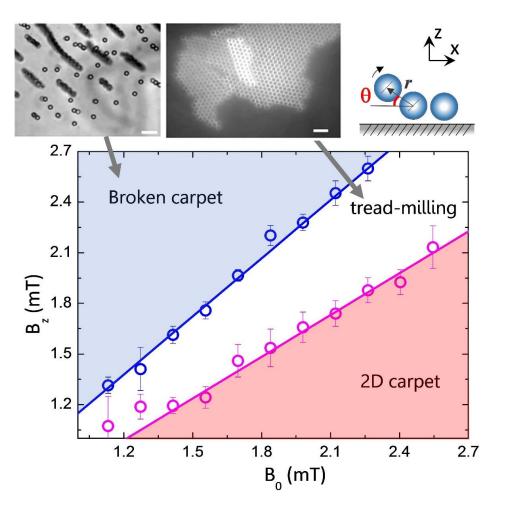
$$\dot{\theta} = \frac{1}{4\zeta a^2} \frac{3(V\chi B_0)^2}{64\mu_0 \pi a^3} \left(1 - \frac{B_z^2}{B_0^2}\right) \sin 2\theta - \frac{1}{4\zeta a^2} \frac{\pi a^3 B_0 B_z \chi \tau_r \omega}{2\mu_0 (1 + \tau_r^2 \omega^2)}$$

Many Particles: Dynamic Regimes

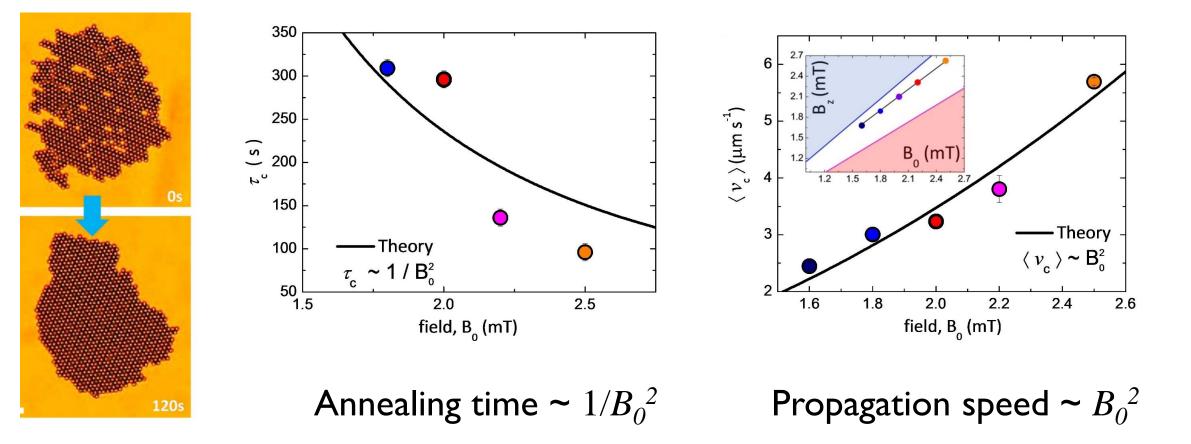
$$\frac{B_z}{B_0} \leq \frac{-c + \sqrt{c^2 + 4}}{2} \quad (\theta \sim \pi/2)$$
$$\frac{B_z}{B_0} \geq \frac{c + \sqrt{c^2 + 4}}{2} \quad (\theta \sim 0)$$

where

$$c = 6\tau_r \omega / [\chi (1 + \tau_r^2 \omega^2)]$$



Tread-Milling: Driven Annealing



2. Active Clustering of Magnetic Microswimmers

Magnetic Microswimmer

• Natural: magnetotactic bacteria (Blakemore, Science 1975)

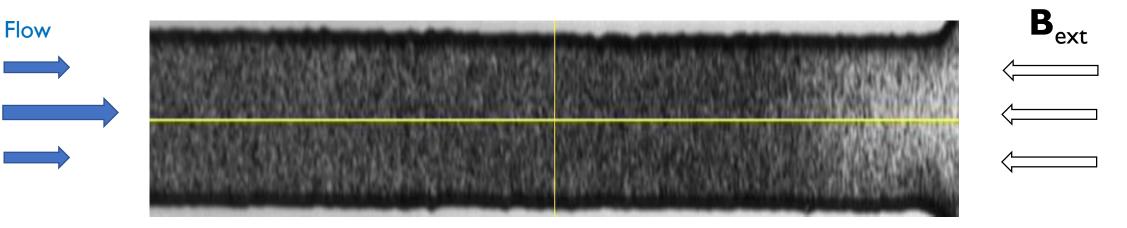
• Synthetic:

Dreyfus et al. Nature 437, 862 (2005)

Ghosh and Fischer, Nano Lett. 9, 2243 (2009)

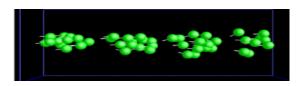
Hamilton et al. Sci. Rep. 7, 44142 (2017)

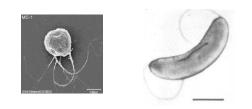
Magnetotactic Bacteria in Microfluidic Channel



Waisbord, Lefevre, Bocquet, Ybert, Cottin-Bizonne, PRFluids 1, 053203 (2016)

Why clustering?



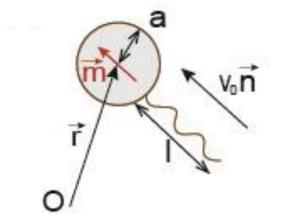


Pullers: attractive hydrodynamic interaction

Garcia, et.al., PRL (2013) Jibuti, et.al., PRE (2014) Lauga, et.al., EPL (2016)

magnetic dipole-dipole interaction

Individual Magnetic Microswimmer



magnetotactic bacterium

Equation of motion

$$\frac{d\boldsymbol{n}}{dt} = \left[\frac{m_0\boldsymbol{n} \times (\boldsymbol{B}_{\text{ext}} + \boldsymbol{B}_{\text{int}})}{\zeta_R} + \frac{\boldsymbol{\nabla} \times \boldsymbol{V}_{\text{f}}}{2} + \boldsymbol{\xi}_R\right] \times \boldsymbol{n}$$

$$\frac{d\boldsymbol{r}}{dt} = v_0\boldsymbol{n} + \boldsymbol{V}_{\text{f}} + \frac{1}{\zeta}\boldsymbol{\nabla}(m_0\boldsymbol{n} \cdot \boldsymbol{B}_{\text{int}}) + \boldsymbol{\xi}$$

Meng, Matsunaga, Golestanian, Phys. Rev. Lett., 120, 188101 (2018)

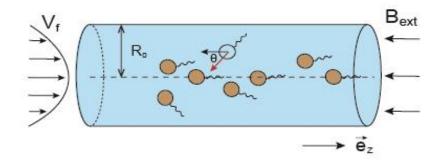
Orientation: Pinned

Faster relaxation of rotation than translation

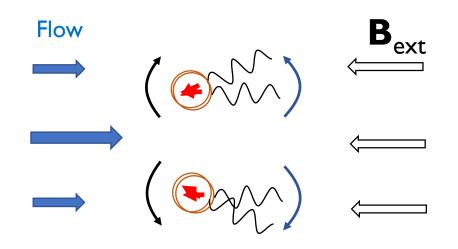
$$\frac{d\boldsymbol{n}}{dt} = \left[\frac{m_0\boldsymbol{n} \times (\boldsymbol{B}_{\text{ext}} + \boldsymbol{B}_{\text{int}})}{\zeta_R} + \frac{\boldsymbol{\nabla} \times \boldsymbol{V}_{\text{f}}}{2} + \boldsymbol{\xi}_R\right] \times \boldsymbol{n} \equiv \boldsymbol{O}$$

Swimmers are pinned in orientations, depending on the radial positions

$$\sin\theta \simeq \frac{v_{\rm f}k_{\rm B}Tr}{(D_r R_0^2 m_0 B_{\rm ext})}$$



Translation: Radial Focusing



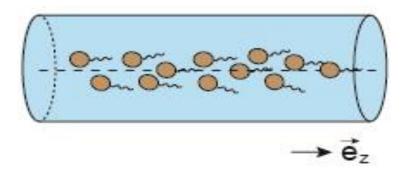
Brownian particle in a quadratic potential well

$$\dot{r} + \frac{k_B T v_0 v_{\rm f}}{m_0 B_{\rm ext} D_R R_0^2} r + \frac{k_B T v_0}{m_0 B_{\rm ext} D_R} \xi_R^{\phi} = 0$$

Number density at time t and location **r**

$$\rho = \rho_z(z;t) \frac{R_0^2}{2R^2} \exp[-\frac{r^2}{2R^2}]$$

Focusing radius:
$$R^2 = \frac{v_0 k_B T}{v_f m B_{ext}} R_0^2$$



Translation: Longitudinal Clustering

Fokker-Planck equation describing the evolution of number density at time t and location \mathbf{r}

$$\frac{\partial \langle \rho(r,z;t) \rangle_r}{\partial t} = -\nabla_z \left[\left\langle \rho(r,z;t) v_0 \boldsymbol{n} \cdot \boldsymbol{e}_z \right\rangle_r + \left\langle \rho(r,z;t) V_{\rm f} \right\rangle_r \right] \\ \left[-\nabla_z \left[\frac{1}{\zeta} \left\langle \rho(r,z;t) \nabla_z (m_0 \boldsymbol{n} \cdot \boldsymbol{B}_{\rm int}) \right\rangle_r \right] + D \left\langle \nabla_z^2 \rho(r,z;t) \right\rangle_r \right] \right]$$

Dispersion Relation

By assuming $\rho_z(z;t) = \rho_z^0 + \delta \rho_z(z;t)$ and expressing the perturbation in its Fourier transformed form, $\delta \rho_z(z;t) = \frac{1}{4\pi^2} \int \int d\omega dk_z \exp[-i\omega t + ik_z z] \delta \hat{\rho}_z(k_z,\omega)$

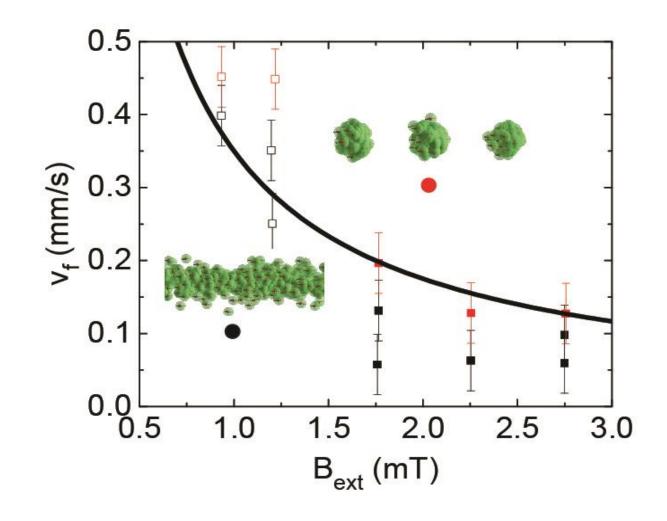
The dispersion relation

$$-i\omega = \frac{k_z^2}{\zeta} \left[\frac{\mu_0 \rho_0 m^2 R_0^2}{4R^2} g(k_z R) - k_B T \right] + \frac{ik_z [v_0 - v_f]}{g(q)} g(q) = \left[1 + q^2 \exp(q^2) \operatorname{Ei}(-q^2) \right]$$

growth rate (stability factor) propagation factor

clustering condition:
$$\underbrace{\frac{\mu_0\rho_0m^2}{4k_BT}}_{\langle 1\rangle}\underbrace{\frac{mB_{\rm ext}}{k_BT}}_{\langle 2\rangle}\underbrace{\frac{v_{\rm f}}{v_0}}_{\langle 3\rangle} \geq 1$$

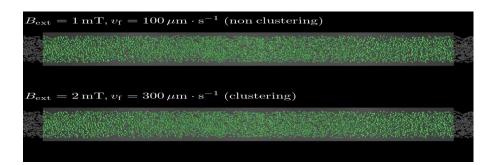
Comparison with Experiment



clustering condition:

$$\underbrace{\frac{\mu_0 \rho_0 m^2}{4k_B T}}_{\langle 1 \rangle} \underbrace{\frac{m B_{\text{ext}}}{k_B T}}_{\langle 2 \rangle} \underbrace{\frac{v_{\text{f}}}{v_0}}_{\langle 3 \rangle} \ge 1$$

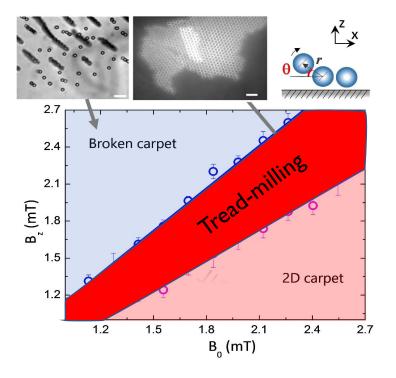
Langevin simulations:



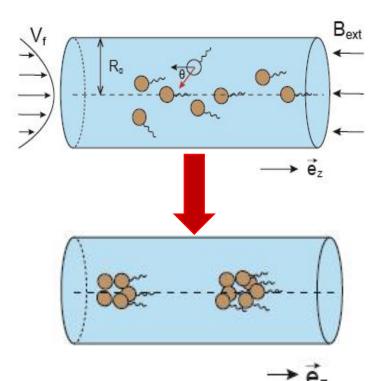
Long time responses: Cahn-Hilliard type phase transition

Take Home Message

I. Dynamic modes of magnetic colloid



2. Clustering of magnetic microswimmers in a channel



Massana-Cid #, **Meng** #, Matsunaga, Golestanian, and Tierno, Nat. Comm. 10, 2444 (2019) **Meng**, Matsunaga, Golestanian, Phys. Rev. Lett., 120, 188101 (2018)

Acknowledgement

Collaborators:

Helena Massana-Cid (Barcelona) Daiki Matsunaga (Osaka) Pietro Tierno (Barcelona) Ramin Golestanian (Goettingen)

Thank you very much